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NONSTATIONARY FLOW ABOUT A WING-AILERON-TAB COMBINATION
INCLUDING AERODYNAMIC BALANCE

By TrxzoporeE TEropomrseN and 1. E. Garrick

SUMMARY

The present paper presenis a continuation of the work
published in Report No. 496. The resulis of that paper
hare been extended to include the effect of aerodynamic
balance and the effect of a tab added to the aileron. The
aerodynamic coefficients are presented in a form conven-
1ent for application to the flutter problem.

INTRODUCTION

It is the object of this paper to present theoretical
expressions for the forces and the moments in & uniform
horizontal air stream on a plane sirfoil performing
smasll sinusoidal motions in several degrees of freedom:
vertical motion, torsional movement about an arbitrary
spanwise axis, aileron movement about & hinge axis
not necessarily located at the leading edge of the aileron,
and tab movement similar to the aileron movement,
The solution of this problem has direct application to
the larger problem of flutter involving these various
degrees of freedom and, in particular, to flutter of
tails with control surfaces, including servocontrols.’

The development of the theory is analogous with
that of Theodorsen (reference 1) who treats explicitly
the case of three degrees of freedom: vertical motion,
torsional movement ebout an arbitrgry spanwise axis,
and an aileron movement about a hinge axis located
at the leading edge of the aileron.

Since this work was originally begun, there have ap-
peared two German papers, one by Kiissner and Schwarz
(reference 2) and one by Dietze (reference 3), that bear
directly on the problem. A ‘compsrison of the results
of this paper with the results of Kiissner and Schwarz,
obtained by a different development, is given in
appendix A.

ATR FORCES AND MOMENTS

Figure 1 represents a wing section with two hinges,
an aileron (rudder) hinge at r=e¢ and a tab hinge at

z=f. The leading edge of the wing is at x=—1 and
the trailing edge at z=1. The leading edge of the
aileron is at z=¢ and the distance from the hinge to the
aileron leading edge e—¢ is denoted by I. The leading
edge of the tab is at x=d and the distance from the
tab hinge to the tab leading edge f—d is dencted by m.
The wing is undergoing the following motions with
small amplitudes: & displacement A (velocity %) in a
vertical direction downward; & turning about z=a, the
instantaneous angle of attack being «; a rotation of
the aileron about z=e, the angle of the aileron or
rudder being 8 measured with respect to the wing;
and a rotation of the tab about r=f, the angle of the
tab being v measured with respect to the aileron. The
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FraUnk 1.—Repreeentation of wing section with afleron and tab showing matn

parameters,

actual chord is considered to be of length 25, so that b
is used throughout the analysis as a reference length.

The procedure and method follow those of reference 1.
In order to avoid needless repetition of certain expres-
sions contained in this reference, the following notation
is frequently used. A symbol or equation followed by
(reference 1) denotes the corresponding expression of
reference 1. The final results will, however, be
explicitly given independently of reference 1.

The air forces and the moments are treated in two
groups: the noncirculatory and the circulatory. The ex-

pressions for the nonecirculatory part consist of apparent-

mass terms, which do not depend on the vorticity in
the wake. The circulatory part takes account of the
vorticity in the wake generated at the trailing edge.
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Noncirculatory forces and moments.—The noncir-
culatory velocity potential at the surface, associated
with the various motions of the airfoil, is

¢=¢i+ datdat st it byt oy (1)
where only ¢4, ¢4, ¢4, and ¢; need be given here.!
da=¢s (veference 1) +vﬁlb% log N(z,¢) @)
¢p=¢5 (reference 1)
— ﬂlb"‘—lr [J 1—a® cos™e— (x—c) log N(z,c) :l (3)
and

b=
with 8, ¢, and Ireplaced byy, d, and m, respectively. The
two extra terms appearing in ¢ and ¢z, which contain
the coefficient [, arise from the aerodynamic-balance
effect, that is, the offset of the sileron hinge position
from the aileron leading edge. The derivation is as
follows:

The motion of the aileron around z=e¢ is considered
separated into two parts, & turning around the aileron
leading edge plus a vertical displacement of the aileron
relative to the wing (fig. 2). The amplitude of the

~H=23

\

-7 c 7
B e & Carming atomnd oot s & versien o o 09 separated
first type of motion is 8 and of the second type of
motion is bH=bB(¢e—c)=>bBl. The additional potentials
referred to are then due to the effect of the vertical
displacement bH and the associated vertical velocity 6.
The potential associated with bH is determined from
a limiting case (as ¢’—c¢) of a shape (fig. 3) located on
the z axis from z=—1 to z=c¢ and at ordinate  from
z=c¢’ to =1 and joined by a straight-line segment
from z=c to 2=¢’. This potential is associated with a
vertical-velocity distribution: :

! The expressions for the ¢ values are to be understood xed by o= signs: b
for the upger gide of the lns segment and by — for the 10%23 alde, v v+
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w(z) =0 —1<n<e
=pg= c,”_ :  <a<lc
=O G'<I]<1

The surface potential associated with a vertical
upward velocity of the air of magnitude w at the ele-
ment located at 2=z, is

_bw (E—2)H (y—y)?
A= 18 Gy Ty Ty ™

" y=+1—2 and y,=+T—27

Equation (5) is fundamental to the description of the
noncirculatory flow pattern since, by integration with
respect to z;, any admissible potential distribution may

(6)

where

“be obtained. The integrated result desired in this case

as ¢’—¢ is simply

WH | @—0+(JI=F—T=2)*

%= %r %8 a—eyt (V=P VI=
=vbﬂl%_ log N(z,c) (6)
where
—rp— 1T — { —o¥
Nezo)= 1—zc 1(/} l—a:?‘/ I—¢
Limit of fas ¢'+¢)
7~ ! -
-7 c - e! 7
l_ ~ —
4 c 1

FioURX 3.—Representation of the sharp vertical displacement as a limit.

The potential associated with bH is due to & vertical
velocity distribution
w=0
= Flb
and is (see ¢, reference 1, p. 5)
1

bz = Ad
Tym=—1
| e P
=—ﬁlb2;[1/ 1—z% cos™le— (z—c) log N(z,0)] (D)
Exactly similar considerations were made for the tab
and lead to equations (4).

It may be remarked that the analysis assumes no
leak of fluid in the gap between the aileron and the
wing; that is, the gap is considered sealed.

The following new sets of integral evaluations will be
required. The expressions for the 7 and Y terms are
listed in appendix B. The T terms are functions of ¢
or of ¢ only. When no explicit mention is made, ¢ is

—1<n<e
el <1
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to be understood. The Y terms are functions of both
¢ and d.

fql55d4:= —g’%f_ (Ts+4-2l4/1—¢ cos™lc)
1 20

) ¢5dx=—§—§(n—m)

[(ose—cyta=—58 a1y

) ‘site—do=—1L (i)

fi¢gdz———ﬁ(T4+2 Ji=¢*
o b

[ osde=—2F @~

[ ase—orts——YE @teyi=2)

[ sste—cyte=—YE imy

[ote——"l Tt mTy

[(ote==52 (Fi—m1y

f1¢.,(a:—c)ir= _‘bﬂ (Yi—mYy)

[l ee—ote——L (Fe-m¥0

. bvg

([ sstnm 2B 417y
R

[Jomte=—SE wimiry

[(ase—dd=— @17y

[, w(z—d)dx———m—m)

The pressure difference on an element of the airfoil
located at = is

204, 0
—20 (5 3ot ®
and the totel force (positive downward) is therefore
P=—2b [ 3o )

The moment on the airfoil (positive clockwise) a.bout
z=a is

M= [ c—aypds
=—2pbf_11<}5(a:—c)dz—l—2pabf;¢dx
—2c—a) [ 4z (0)

The moment on the aileron (positive clockwise) about
the hinge z=¢ is .
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1
Mp=b’f (x—e)pdzx
This moment may be written

My=—2pb? i :;'S(z—c)«:i’:r+Zm'bfI odx
c 4

2,87 f ' odrb2ubllel (1)

Similarly, for the moment on the tab about the hinge
$=f +

ﬂf7=—2psz:: &:(z—d)d.z:—l—2m'bj: odr

4208tm L ' drt2pbmlel  (12)

Circulatory terms.—The potential at the surface of
the airfoil associated with an element (counterclockwise)
of vorticity in the wake at z, of magnitude AT'=Ubdxr,
is (reference 1, p. 8)

rdxe=—-— e L ‘ (13)
where (<1 and zo>1.
The potential for the entire wake is
= ["orda (14)

With the assumption that the wake remsins where
formed, the expression for the pressure at z (equation
(8)) becomes

=~ "”f i N

The Kutta condition for smooth flow at the traﬂmg
edge, which requires that 3/dz(®r+¢) must remain
finite for =1, leads to the result
LS B N 5 S S TR T 8
o), rr zo—ldr"_m-[_h_l_b 3

@)at HTu—ITueg
o (Tu—2AT )b+ =(Tio(d) —mTu(@))oy

Fo-(Tu(@)—2mTu@)by  (6)

This quantity will be denoted by @.

When the various degrees of freedom of the airfoil
are undergoing sinusoidel motions of the form e** for
a long period of time, the wake is also sinusoidal and
it is convenient to introduce the parameter k defined
by the relation

or
== )
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The force (negative lift) on the airfoil due to vorticity
is

P=b f_l)pdm=—21rpvb()(k)Q (18)
where C(k)=F(k)+1iG(k) denotes the fundamental

function introduced by Theodorsen (reference 1, p. 8)
The moment about z=aq is-

M= [ pe—ayds=2em] (a+3)om—1 J0

The hinge moment on the aileron about z=e¢ is

(19)
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1 1 1
M=t [ pla—e)de=t? f ple—c)dz+be—e) f pdz
=—ptb* (T30 (k) — T0) Q-+ pobL (2 TusC (k) +2«/ﬁ’()2%)

Similarly, the moment on the tab around its hinge,
r=f, is
M,=—pb*(T:a(d)C(k)—T.(d))Q
+ pob*m (2T50(d) C k) + 21— Q @n
Finally, when both the noncirculatory and the

circulatory terms are combined, there result the follow-
ing expressions for the force and moments.

TOTAL FORCE

= —pb*(xwh-+vwa— xbas—vT,f— leﬁ oTi(d)y— Tu(d)by) — b U—2V T8+ bT.8)

— pb*m (—2+/ T—dry+bTi(d)y) —27p00CQ ~
where

(22)

Qma-t Rt b 0 Jirt 2 (Tho—1T)0B + 5= (Tu—2AT )b+ 2 (Tad) —mTu@)or + 5Tl —2mTial )by

TOTAL MOMENT ABOUT x—=a

M. ——pb’[—awbh—i-r

)vba-l—wb’( +a,‘)a—l—Tufﬁﬁ+T15063+2Tub’B+Tu(d)v"Y+Tu(d)vb'r

+2sz(d)627]—Pb’Z(Tn0’ﬂ+Tanbﬁ‘[‘Tub'B)"Pb”n(Tn(d)”"Y+Tu(d)t‘b7+Tu(d)b’7)+21‘Pﬁbﬂ a+3)CQ (23)

TOTAL AILERON HINGE MOMENT

M=

—pb*(—lefz+Tuvbca+zTub=a+lrmv*s+lTuvbs—lwmlY,v=7+lYmvb~'r—lY.b=a)

— b Tibhot Tobei + T+ S Lo+ 2 Tbrpt ST B+ 20ty + 2T o 4 270

— bl (%Tuv’ﬁ+;Tnbva—;T,b2B) -—pb’m-<;Ylsv"y+;_Yubv"y-{-;Y‘b’y)

—pbim (2F0y-+ 1Yoy — L V7 ) — b (T —21T0)0Q

(24)

TOTAL TAB MOMENT

M,= —pb"(— Ti(d)bh + T (d)rba+2 T (d)ba -+ %,Ynf"zﬁ‘l‘%yls”bﬁ'—’l_yub’a‘l',—erm(d)v"Y‘l"}_Tn(d)f’b'f’

— L1, @1% ) — bt (T @b+ Tus@yobic-t To @t 1Yo+ 1 Vutbf+ 1Y BB
+ 2 @+ 2T @i+ 2T@)5 ) — b S Ta( @y + 1 @by —2Tu @)1 )

— U LY+ Vbt LY ) bl A i L Vrdofl— 2V ) — o0 (Ta(d)—2mT(d)) CQ

(25)
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Discussion of the term T'9g.—The concentrated sink-
source representing the steep break (figz. 3) properly
describes the msain flow pattern, but the local flow
pattern at the break is incorrect. The underlying
theory excludes the possibility of representing the flow
at & steep break. The limiting process therefore can-~
not be used in this simple theory, as far as the locsl flow
is concerned. _

There is one term that depends on the local flow
condition at the break. This term arises in the evalua-~
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FIGURE 4.—Representation of the effective mean camber line for a displaced afleron
with hinge posftion at =« 23 depending upon an additionsl parameter ¢’.

tion of [¢s]: (equation (11)) and is present in the expres-
sion for the force on the aileron. It occurs, then, in the
expression for hinge moment M; in the term Ty
associated with the coefficient 8.

In order to picture the local flow and, at the same
time, retain physical reality, it is necessary either to
disregard a certain small neighborhood of the break or
to spread the concentrated sink-source over a certain
finite area. This end may be accomplished by regard-
ing the mean camber line of the displaced aileron with
rounded leading edge as depending on an additional
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parameter ¢’ (fig. 4). Let e—¢’=Il' and ¢’—c=X\. The
velocity potential at the surface replacing equation (2)
is then

F
¢p=¢ﬁ,c'+%(¢a:=r—¢a,é
where ¢g,; denotes ?g[ 1—2% cos™! e— (z—c) log N{z,¢)]

The analysis can be performed by use of this .quation
and s similar one for ¢ instead of equations (2} and (8).
The result will, however, differ essentially from that
already presented in two respects: (1) The average value
of I will be slightly less than e—¢ and will be nearly
%" (@) The term log N(e,’) will occur in Tiy
to replace the infinite term log N(c,¢). _

An effective value of ¢/ may be estimated in any
given case or may be determined by experiment. The
essential point is that the difference ¢/—¢ cannot

€

become zero. It appears probable that ¢/—ec is greater

than, say, 0.05 (¢—¢) and less than 0.40 (¢—¢). Asan
average value 0.25 (¢—¢) appears good. Within thess
limits the value of the term log N{¢,c’) is fairly inde-
pendent of the selection of ¢. The effect of the choice

of ¢’ in the steady case on the hinge momentisillustrated

in figure 5. Conversely, the experimental hinge-
moment values may be used to estimate ¢.
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FIGURE 5.—Hinge-moment coefficdent agalnst hinge-offset parameter Jme—c for various valnes of the mean-camber-line parameter A=c¢'—¢. (Steady mse.-i-ﬂ.)
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Equations (22) to (25) may be conveniently expressed _ (ﬁ ) .
in a coefficient form: My=—rpu?tY FAn+adwutBAutrdn ) (24)
’ » h ’
P=—zpu’b %‘Acn‘l'aAca—l'ﬁAgr[-‘rAc-, (22%) M,=—xps* ‘('Bﬂdh+aA¢u+ﬁA¢a+'YAn) (251
M B 2 hort-adt A y | Where
o= — TP (‘5 artadee+BA+y a’r) (23%) w=kofb, Aa=Ro+tilm Awm=Ru+til., ete.

L]
and where

R.,,=-—Aa1+(%—a2 273_(_;4_@)25
Roy==dpt et (Jra ) (Dog 2ol (Lo tTpal ]
Ro=—dn+(3+a)?

Ruy=—Anit grort (30 | (Tl —2m T @)~ Tu@ —mTu@ %y
R,.=—B.,.7&(1‘,,-21%)[(%_4)%‘?_%

Buyy=—Bo+ B (Ta—21Tx) :g;(rll—zmo)?g -3 (Tm—zT,l)%ﬁf

(]
Bu=—Bu—a-(Ta—2T)2E S S S

Ri=—Bost Bn—g- (Tu— 2T - (Ta(@—~2mTia@) 5 — ATl —mTu@) 3

Ruim— Cu— (a4 2E o | L

Reg=—Cp— o (Tu—20Ti) 34+ LT 1T 2]

R”=— 71'—'2—];‘_(1’11 (d) —-Zme(d))¥+%(Tm(d) _mTﬂ (d))g

Ruu=—Da—5-(T@—2mTu(@)] (3- 0 25 |

Ru=—Di+ D=5 Tia(@) —2mTu(@)] g (Tu—2Ti0) o= 2 (Tu—IT)
Bov=—Du—p=(Ta(d)—2mTa(@)2F

Rey=—Dur+ D= Ta(@ —2mT(@)] o= (T @ —2m Tl 3~ A Tu@ ~mTa @} |
- G]

Lo=An—(5+a | 2To— 1T +5-Tu—2T92r |

el (o]

To=Han—(3+0 | Tu@ ~mTu@) 5+ o (Tu@—2mTat@)2F |
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IM—E{B‘,,+2 - (T—2lTy)| 22 4+( 1 )ZF]}
Iu=;{3m+;(T,.—2113.,)[;(Tm—znl)7+2—,(ﬁl'—zzfm)zF]}

TIn=r 5—(Ta—2iTy)2F

L= f{Brart g (21T 2@ —mTn@) -+ 5T @) —2mTio@)2F |

L= Cat 3 +(3—a)or |
I cﬂ—_—‘iil:aﬂz+;(ﬂn—lT 21)‘[+Z.(T 11_2;171“)21?]
Ic,=%2F

1.,=%|:0,,+,—1r(Tm(d)—mﬂl(d))7;+2 (Tud)— 2m’—"w<d>>2f"]

I“=1{D¢2+l(Tu(d)—_2me(d))[ +<§— )21?]}

L= Dovt 5= Tiad) —2mTu@)| £ Too— 1T Bt o (Tu—2T2F |
Im\=z 2——(T,,(d)—2me(d))2F

L= Dot 5 (Ta( D —~2m T )| H(Ta(® —mT(@) 5+ 5= (T @)~ 2mTu@)2F |

Aa=gta Bu=2y(—Tot2T,—UT))
4l g Boy= 3(Tia-H T+ P T)

Am=—[—2£ i z%

Ap=2(TyHT)

Ap=(TyHTo)

A.n=—¢l

An=1QTa(@)+mTod)

A= (Tis(d) +mTn(d)
=1 (Tis(d) +mTa())

B:I. =A-Bl.
= T+ Thn)

T0633% O - 48 - 1@

Bu= (T H T+ BT)

Bu= —(—T;-HTQ

.,1—1_,( Yo+ IY+mY,—IlmY )
Ba=(TuHTut m¥utimTo)

Bpy=5(Fe Tyt mVu+m¥s)

0¢5=An
0,3:1
0ﬂ=Bk1

= g(— T~ 21/ T—)
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D-1 ='A-yl

Du=2(T(@+mTu(@®)
Dp=By -

D= 25Tt m ¥Vt ImFa0)
Din= 5 (Via+m Yo+ ¥+ To)
Du=i(~T@+mT@)
D= 5(— Ty(d) +2mTy(d) —m*Ty(d)
D= 5(Tiu(@) + T (d) +m )
Dy=5(T0(@) + mT@) +m*To@)
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CONCLUDING REMARKS

The material presented in the preceding pages repre-
sents an extension of the work published in reference I,
which has been expanded to include the tab functions
and the effect of aerodynamic balance. Inasmuch as
this addition fits in with the general arrangement of the
earlier report, reference should be made to that report,
and also to reference 4, for the application to the
flutter problem.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,
NaTioNAL ADpVisORY COMMITTE FOR AERONAUTICS,
"LaxarEy F1ELD, VA., December 16, 1941.

APPENDIX A
COMPARISON WITH REFERENCE 2

In order to compare the results of this report with
those of Kiissner and Schwarz (reference 2), the follow-
ing relationships are noted:

¢=—C08 ¢ Tu=%,
d=—cosy Tu=%;
k=—1tw T 1
O(k)=1+2T(—iw) u=g¥
a=—l L Tu—__-‘I’s
1
Ti=5%
T,—-—-;-‘Ih 16=5%s
1
T2=_%‘I’a7 Tl7=§4’n
1 Tls=‘1’m
Ty=—=d
Ts ;‘12 Tm=%¢‘u
1=
Ty= — &y To=%n
1 T¢1=‘I’la
T°=§¢“ To=—%;
Tio=% Toy=—2%;

Tu='—%‘1’e To=—(Pyt+Pa)
Tog=r—Psg | Tw=wret
Tos=— (®1a+%as)* Ti=2u

log N(c,d)=—L(¢,¥)
Yi(e,d)=—Xu(e,¥)
Yi(e,d) = Yis(e,d) —Tile) Tn(d)
Ys(c:d) = —Xll(ﬁo:\")
Y;(C,d) =—X, (‘P;‘p)
Ys(c:d) = :Yl(d;c) =XI(‘P}‘I’) —XIT('PJ \")
Ya(e,d)=—Xu(e,¥) _
Yy(e,d) =Xs(e,¥) +21l0)En (¥)
Y (c:d) =Y, (d:c) =Xs(o,¥)
Yis (c)d) =Yy (d,C) =X (o) \l’)
Yy(e,dy=Yu(d,0)=—X(p,¥)
Yao(e,d) = Yu(d,0) =—Xilo,¥)
I’2_1 (e;d)=Yu(d,c)= _XIG(("}#’)
Yzz(cxd) =Yy (dsc) = _XIT(‘P"I’)
Yo (C,d) = Yu(dsc) =XH(¢; \")
Yu(c;d) = }716 (djc) =X18(‘Ps W)

lTherea%pean to be an error In the sign of the numerical values for 4y In table 8

of reference



APPENDIX B
EXPRESSION FOR THE T AND Y FUNCTIONS

T FUNCTIONS

To=cy/1—¢ cos~le— (L—¢%)
=41—¢ (¢ cos~le—+/1—&)

T1=—% @2+c)y1—ct+ecoste

Ti=e(l—c—( +°’).1/1 —e? cos™! ¢te(ecos™ ¢)?
Ty=— g (1—¢) (56 +-4) + 5 e(T+ 269 T2 cos™'c

—(%—{—c’) (cos™lc)?

Ti=e1—c—cos™le
To=—01—c)+2c+y1—¢ cos™ c—(cos™¢)?
To=f-.

= —%6(7 +2¢9)4/1 -—?-—(—é—-l—c’) cos~ ¢
Ty= _%(1 4264/ T—& +¢ cos—! c= —:ﬁ; (1—e*2—¢T,

T9='é'|:% (I_G’)Sn‘l‘GTL]
1110='Jl—c’+003_1 c
Tu=02—c)yI—c+(1—2¢) cos' ¢
Tu=2+c)y1——({1+2¢) cos' ¢
Ta=—5(Tr+ c—a)Ty)

Tu=1—16--[—%ac
Tw=T+ Tm—- (1+e)+1 _E
Tw=T1—Ts—(c—a) Trl""ﬂ1=' (1 c’)

7+
Ty=—2T—Tit a—-;—)n=—§<1—c=) ~
ﬂs=ﬂ"'T4Tw
ﬂ9=_‘%‘T4TII

Tw=—+1—+cost ¢
Ta=y 1o
T=2/T—¢ c*-\/l'{“’

Tu=(—1—2¢+2a)/1—¢
To=Ts+(c—a)T\=—2T,
T25=T4—(1—G)‘Jm’

)n

T ——T4

21/_c=Tm+Tﬂ/1+°

Tz——T4Tm —\/1 OzTu . - - T
Tos=2(1+4c+log N(c,e))
Tm=241_—52Tm

The term Ty is discussed separately in the paper..
The variable ¢ is to be understood when no explicit
variable is indicated for the T terms. °

¥ FUNCTIONS
Yi(e,d)=—+1—EYyI—d*—cos e cos' d
+d 1= cos™'e+cI—cEcos d— (d—e)*log N{c,d)

where L
Nee,d) =Il—cd—1é1 —aJ1—-a@
—¢
Ya(e,d) =2+/1—@* cos™! e—2(d—¢) log N(c,d)
Yile,d) == (c-[—2d)1/ 1=¢/1—+d cos ¢ cos—1 d
—§(2+d’)ﬁ:? cos™l¢
—2(1+3cd—c)YT=¢ cos™ d
-[--;(d—c)’ log N(e,d)
¥i(e,d)=Y3(dye)
——(d+2c)1/ 1—SJI—diteccoslceostd
——(2 +6)4/1—¢ cos™'d
—§(1—I—3cti-—d’)-\/ 1—d?coste¢
—5(d—0)* log N(e,d

Ys(e,d) =—+1—T—a+ (2c—d)/I—d cos~' ¢
+(d—c)* log N(e,d)

y(esd)=— T T=B( 1 55+ 5+ Hged
(et
+5|:£l(§—d’)+c(2+d’)]ﬁ‘—? cos™1 o
+{4(——c’)+d(2 +c’)]«/ﬁz cos'd
+ 9= 108 Neeid)

187



138 REPORT NO. 736—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Yi(ed) =24 1= cos" d+2(d—c) log Niod)

= Yz (d; 6)

Yi(e,d)=—+T1—1—@4 2d—e)JI—ct cos™' d

+(d—c)* log N(¢,d)=Y(d\c)
Y, (é:d) =-T (G) Ty (d)

Yiolesd = Yo Vi g Tule) Tu(d)

Yule,d)=Y;— 2‘\/T'——02T10(d)
Yuled)=Y— Ys—'\/]— —cTu(d)
Yi(e,d) =Y+ Ti(c) Tn(d)
Yuled)=Y:—Y,

Yis(e,d) =241—c"Tu(d) 42 log N(e,d)
Yi(e,d) =Y3— Y7424 1—c*Ti(d)
Yule,d)=Y1—Ti(@) Tho(c) =Y (d,c)

Yis(ed)=Yi— Yo 3Tu(d) Tu(e) =Yuo(d,0)

Yule,d)= Yz—21/ 1—d*Tw=Yu(d,0)
Yuled)=Y,— Yy— '\/ 1—&T; 1="Ymn(d,ec)

Ya(e,d) =Y+ Ti(d) Tnlc) =Yua(d,c)
Yale,d)=—Yi+ Y+ Tole) Tu(d) = Yi(d,c)
Yau(e,d) =24/ 1= T (6} +2 log N(e,d) =T1s(d,c)
Yule,d)=T;—Ye+241—T1o="Yis(d,e)

In the eveluation of the Y terms the following per-
tinent integrals occur:
A _(2:— c) a1
[e—ortogna=E2
_NI=¢ (=",

log N

nt+1 J J1—22
where _. .
N=I1—cx—41—?41—c’
z—c¢

In order to evaluate the last integral put x=cos 6; for
example, consider n=1:

1
f(x—o) log Ndz=—g%-g£ log N(e,d)
d

- 12 (-Jmi—c cos™? d).

REFERENCES

1. Theodorsen, Theodore: General Theory of Aerodynamle
Instability and the Mechanism of Flutter. Rep. No. 406,
NACA, 1835.

2. Kussner, H. G., and Schwars, L.: The Oscillating Wing with
Aerodynamically Balanced Elevator. T. M. No. 981,
NACA, 1941,

3. Dietze, F.: Die Luftkrifte der harmonisch schwingenden, in
sich verformbaren Platte (Ebenes Problem). Luftfabrt-
forachung, Bd. 16, Lig. 2, 20. Feb. 1939, pp. 84-06.

4. Theodorsen, Theodore, and Garrick, I. E.: Mecchanlsm of
Flutter—A Theoretical and Experimental Investigatlon of
the Flutter Problem. Rep. No. 685, NACA, 1940.



